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Table II.31P NMR of 6 (0.026 M in CH3OH) with Added Sodium 
Methoxide 

NaOCH 3 1 M 

0 
0.006 
0.027 
0.046 
0.074 
0.126 
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solution as the temperature is decreased from +5 to —50 
0 C. 

More basic solvents, such as pyridine, increase the relative 
amounts of 6 in the equilibrium mixture as evidenced by the 
upfield chemical shift (— 12.4 ppm) of the single peak seen at 
28 0 C relative to that seen at the same temperature in less basic 
solvents such as CDCI3 (+45.6 ppm). The further downfield 
shift (+81.9 ppm) and sharpening of this peak upon addition 
of one part of trifluoroacetic acid (TFA) to nine parts of the 
CDCI3 solution is interpreted in terms of protonation of 7. 

Most interesting is the effect of incremental addition of 
sodium methoxide to a methanol solution (Table II) of 6 or 7. 
Progressive sharpening and shift of the 31P NMR signals to 
higher field are observed, reflecting the formation of 5. 

CH3 CH, 

TFA P = O H 

8 
Moreover, upon addition of excess sodium hydride to THF 
solution of 6 (or 7), immediate evolution of hydrogen is real
ized. Filtration and removal of solvent gives analytically pure 
sodium salt of 5.10 A THF solution of 5 shows a single sharp 
peak in its 31P NMR at -26.9 ppm. 

The similarity in 31P chemical shifts seen (Table II) for 
solutions of 6 in CHsOH-CHaONa (as negative as —22.2 
ppm) and for the sodium derivative of 5 (—26.9 ppm) or the 
magnesium derivative of 5 (-20.8 ppm) in THF suggests that 
sodium methoxide is sufficiently basic to convert 6 to its con
jugate base 5. The detailed dependence of 31P chemical shift 
on methoxide ion concentration revealed in the data of Table 

II suggests that 6 titrates as a weak acid in methanol. In par
ticular one should note that the addition of 1 equiv of base does 
not produce the chemical shift characteristic of the phospho-
ranoxide anion 5. Further work will be directed toward a more 
quantitative assessment of the acidity of 6. 
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A Kinetic Model for the Formation of the Conductor 
JV-MethylphenaziniumTetracyanoquinodimethanide 
(NMP-TCNQ)1 

Sir: 

Prior to the discovery2'3 of the metallic tetrathiafulvalenium 
tetracyanoquinodimethanide (TTF-TCNQ), the best organic 
conductor was the 1:1 TCNQ salt of the /V-methylphenazin-
ium (NMP, la) cation4 which exhibits a uniform segregated 
stack crystal structure.5 This 1:1 salt is unusual because at least 
28 other 1:1 TCNQ salts of planar closed-shell nitrogen het
erocyclic monocations4,6 '10 are insulators11 with structures 
that do not exhibit the "infinite chains" of NMP-TCNQ 5 in 
the three reported cases.12-14 The perspective adopted herein 
is that the 28 insulating salts constitute "normal" behavior for 
this subclass of TCNQ salts and that an explanation for the 
formation of NMP-TCNQ is desirable. 

This communication proposes a kinetic model for the for
mation of NMP-TCNQ involving a donor-acceptor interaction 
between the acceptor la and any of several donor "impurities" 
found in precursor salts of la and which persist in NMP-
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TCNQ.15 This is the first order of several models involving 
specific nonbonded interactions16 to be proposed for the for
mation of "unconventional" ion-radical salts such as NMP-
TCNQ and TTF-TCNQ.17 Moreover, the perspective of 
NMP-TCNQ developed herein has major implications for the 
low-temperature properties of this phase. While there are 
several examples18 where mechanistic pathways have been 
proposed for chemical transformations, and hence phase for
mation, in the solid state, the novel aspects of NMP-TCNQ 
cited afford an opportunity for a phase precipitating from 
homogeneous solution. 

In the course of preparing "high purity" samples of 
NMP-TCNQ and related materials19 for conductivity,20 

specific heat,21 and other physical studies, the isolation of the 
phase expected from the reaction of methyldihydrophenazine 
(NMPH, 2a, and TCNQ22"24) and the isolation of a phase with 
an x-ray powder pattern consistent with the reported25 

(NMP)2(TCNQ)3 structure concerned the present author. 
Since many TCNQ salts are handled with no unusual diffi
culty, the isolation of the TCNQ salt of 2a suggested that la 
was reactive under conditions for formation and crystal growth 
of NMP-TCNQ, a point well precedented.26 In particular, la 
may be dealkylated to phenazine (3) with subsequent carbon 
methylation of 3, presumably by a Friedel-Crafts-type 
mechanism, and is readily reduced to 2a.26 Hence, one might 
expect the presence of 2a and 3, inter alia,26 in samples of salts 
of la and NMP-TCNQ. 3 is readily detectable by thin layer 
chromatography (TLC) in chloroform on silica gel in both 
NMP-TCNQ and either the methosulfate27 or hexafluoro-
phosphate of la.28 In marked contrast to the salts of la, TLC 
analysis of the ethosulfate of lb (NEP), which forms a 1:1 
insulator with TCNQ,4 reveals no detectable impurities. 
Further, when samples of the methosulfates of la or NMP-
TCNQ are partially vaporized at 40 0C and 10-8 nm in a mass 
spectrometer, both show peaks at m/e 196 which are more 
intense than the peak at m/e 195, implying the presence of 2a.29 

Additionally, the methosulfate of 1 exhibits a peak at m/e 208, 
assignable to a mixture of the constitutional isomers of di-
methylphenazine. 

The presence of donors 2a, 3, and possibly others26 in the 
presence of the acceptor la suggests a model for the formation 
of NMP-TCNQ shown in Scheme I, namely a donor-acceptor 
interaction, facilitated by favorable solution equilibria, between 
any of the donors present, and la30 initiates formation of a 
linear cation chain which is then electrostatically compensated 
by TCNQ anion radicals. Thus, the cation chain in NMP-
TCNQ contains variable low levels of 3, the cation radical of 
2a (2a+<) and possibly their C-methyl derivatives, and the 
N-methylphenazyl radical,31 stabilized in a crystal,15 ignoring 
for the present the possible presence of phenazine derivatives 
arising from reactions of la initiated by visible light or with 
nucleophiles.26 The presence of the dilute paramagnetic 2a+> 
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a A simplified representation of NMP-TCNQ. The solid 
lines represent molecular planes and the dots represent un
paired electrons. 

adjacent to a one-dimensional electron gas in NMP-TCNQ 
invites analogy to the Kondo effect.32 

It is natural to inquire whether the weak donor-acceptor 
interaction discussed is capable of forming conducting phases 
with anion radicals other than TCNQ. With 11,11,12,12-
tetracyanonaphtho-2,6-quinodimethan (TNAP), it has been 
reported33 that la forms both a conducting and an insulating 
form. With 2,3,5,6-tetrafluoro-TCNQ (TCNQF4), only an 
insulating salt with la is reported.34 Both TNAP and TCNQF4 
have reduction potentials higher than that of TCNQ.35 

Evidence supportive of the suggestion that "impurities" can 
cause formation of a conducting phase was obtained by se
lective36 addition of 15 mol % of the planar 3 and at least 10 
mol % of TCNQ, or, conveniently, the TCNQ complex of 3,19 

to the insulator NEP-TCNQ in acetonitrile solution. The new37 

phase which crystallizes contains ~15 mol % of 36 and has 
polycrystalline resistivity between 10 and 40 fi-cm, a decrease 
in more than nine orders of magnitude compared to NEP-
TCNQ.4 While the concentration of "impurities" used to form 
the new phases is significantly larger than in la and the need 
to add TCNQ suggests the importance of the donor-acceptor 
pair TCNQ --TCNQ,1 6 b it is clear that specific donor-ac
ceptor interactions in solution have facilitated the conversion 
of the insulator NEP-TCNQ into a new conducting phase. 

The amount of paramagnetic species, such as 2a+* or pos
sibly the Af-methylphenazyl radical, presumably randomly 
distributed in the cation chain, will vary from sample to sample 
of NMP-TCNQ depending on preparation conditions. Con
sequently, a significant variation in the magnetic susceptibility 
of NMP-TCNQ is expected, as reported.38 Moreover, the re
alization of the presence of random spins in the cation chain 
has allowed reinterpretation of the origin of the linear term of 
the specific heat of NMP-TCNQ.21 

In summary, the phase known as "NMP-TCNQ" does not 
have a quantitatively39 defined composition, and its formation 
is qualitatively accounted for by a donor-acceptor interaction 
involving la and any of several donors present in precursor salts 
of la. 
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Unequivocal Structural Assignments of 
JV7- and iV'-Acyladenines 

Sir: 

Reaction products of chloroformates with adenine have been 
used as intermediates in the synthesis of naturally occurring 
ureidopurine derivatives.1'2 The reaction of adenine with benzyl 
chloroformate was studied by Altman and Ben-Ishai3 who 
obtained two products under different conditions, and for 
which they suggested the structures benzyl 6-aminopurine-
7-carboxylate (I) and benzyl 6-aminopurine-9-carboxylate (II) 
on the basis of their chemical properties and IR and UV 
spectral data. The former (I) had UV absorption maximum 

N H s COOCH2C6H5 N H 2 NH2 

CX) CO OO 
COOCH2C6H5 COOCH2C6H5 

( I ) ( I ) ( E ) 

(Xmax (CH3CN)) at 291 nm and the latter (II) at 254 nm. 
These reactions were later reinvestigated by Dyer and co
workers4 who concluded that the product II with Xmax at 254 
nm is indeed benzyl 6-aminopurine-9-carboxylate (II), whereas 
the other isomer (Xmax 291 nm) is, in fact, a 3-carboxylate (III) 
and not a 7-carboxylate (I). Their reassignment of the struc
ture of the second isomer was based on the known occurrence 
of N-3 to N-9 alkyl migration of 3-alkyladenine derivatives5 

and on the observation that this compound underwent a facile 
conversion to the 9-carboxylate. Further, similar to 3-alk-
yladenines, this compound (Xmax 291 nm) showed a large 
difference (31 Hz) between the shifts of 2 and 8 protons of the 
purine ring in the NMR spectrum and a relatively high value 
for the UV absorption maxima.6 

Several N-acylated purine derivatives have been synthesized 
in our laboratory,7 and we were interested in determining the 
correct structures of these two reaction products of adenine 
with benzyl chloroformate for an unequivocal assignment of 
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